
Formalizing Timing Diagram Requirements:
in Discrete Duration Calculus

Rajmohan Mattaplacket1, Paritosh Pandya1, Amol Wakankar2

Tata Institute of Fundamental Research, Mumbai
Bhabha Atomic Research Center, Mumbai

November 25, 2017

Pandya Formalizing Timing Diagram Requirements:

Formal Requirement Modelling and Analysis

Domain: Behavioural requirequirements over Embedded
system controllers/Digital Hardware modules
Formal specification notation: some form of temporal logic
In practice: Informal specification, Heterogenous, Visual (UML
timing diagrams, state machines, MSC), Structured text.

Promise of Formal Specification

Unambiguous

Requirement Analysis: Consistency, Model Visualization,
Completeness, Implication checking, Realizability checking.

Verification: Model checking, Runtime verification, Automatic
test suite generation.

Synthesis: Automatic construction of controller which
matches the specification.

In this paper: A logic for formalizing timing diagram requirements

Pandya Formalizing Timing Diagram Requirements:

Formalizing Timing Diagram Properties

Fisler 2005

The less than satisfactory adoption of formal methods in timing
diagram domain can be partly attributed to the gulf that exists
between graphical timing diagrams and textual temporal logic –
expressing various timing dependencies that can exist among
signals that can be illustrated so naturally in timing diagrams is
rather tedious in temporal logics.

As a result, hardware designers use timing diagrams informally
without any well defined semantics which make them unamenable
to automatic design verification techniques.

Pandya Formalizing Timing Diagram Requirements:

Outline

Timing diagrams

From Timing diagrams to Temporal Logic

SECENL ⊂ QDDC

Encoding Timing diagrams in SECENL, and comparsion

Elementary complexity of SECENL automaton construction.
Tool DCTOOLS.

Pandya Formalizing Timing Diagram Requirements:

Timing Diagrams

Components of Timing Diagrams

Timing diagram T = (W ,Σ,C ,Θ)

Σ set of propositions

W (p) gives the waveform of p ∈ Σ

Θ a set of named positions in waveforms.

C set of constraints between pairs of named positions.

Precedence constraints
Timing constraints

waveform Wp - 01a : 2x011xb : x2|220c : 00
waveform Wq - 00a : 0|d : 11|e : xxx|f : 01c : 11
timing constraints: d-a∈[1:8], c-d∈[20:30], b-a∈[10:10]

Pandya Formalizing Timing Diagram Requirements:

Timing Diagram Textual Syntax

Timing diagram T = (W ,Σ,C ,Θ)

Waveform syntax

π := 0 ‖ 1 ‖ 2 ‖ 0| ‖ 1| ‖ 2| ‖ x| ‖ u : π ‖ π1π2,
where u ∈ Θ

0 denotes low, 2 any, and “|” the stuttering operator. Thus, 1|
gives arbitrarily long high signal, and x|, arbitrarily long unchange.

Constraints

C is a list of constraints

Example constraint: (c , d , [20 : 30])

Set of Constraints Θ×Θ× Intv(N)

Syntax is adapted from Wavedrom2 which draws the picture.

DCTOOLS translates TD to logic SECENL.

Pandya Formalizing Timing Diagram Requirements:

Timing Diagram Logics

LTL [Dill, Emerson,1997] and CTL

Extensions: Timing Diagram Logic [Fisler,1999], Pipeline
operator [Chockler, Fisler,2005], SRTD
[Amla,Emerson,Kurshan,Namjoshi,2000]

PSL/Sugar (IEEE1850 [2005]): formulated initially by
Accelera Consortium

Interval Temporal Logic [Moszkowski, 1983]
Duration Calculus [Zhou, Hoare, Ravn, 1990]

In this paper, SECENL a subset of QDDC [P.,1996] and
CTL*(DC) [P., 2001]

Pandya Formalizing Timing Diagram Requirements:

Discrete-time Duration Calculus

QDDC logic of finite (non-empty) state seqeunces.

req 1 0 1 1 0

ack 0 0 0 0 1

We define σ, [b, e] |= D.

Example <req> ^ [!ack] ^ <ack>

Interval temporal logic

Quantitative Measurements of Time

Example In any interval of 20 or more cycles where request is
continuously high there must be at least 3 ack signals.

[]([[req]] && slen >= 20 => scount ack >= 3)

Pandya Formalizing Timing Diagram Requirements:

QDDC Syntax

Let P ∈ Prop(Σ), c ∈ N, D1,D2 ∈ QDDC . Let ∈
{ <=, <, =, >, >=} Then syntax of QDDC:

<P> | [[P]] | slen ~ c | scount P ~ c |

D1^D2 | D* | D1 && D2 | !D |

(exists P. D)

Pandya Formalizing Timing Diagram Requirements:

QDDC: Syntax and Semantics

σ, [b, e] |= <P> iff b = e and σ, b |= P

σ, [b, e] |= [[P]] iff for all t : b ≤ t ≤ e. σ, t |= P

σ, [b, e] |= [P] iff b < e and for all t : b ≤ t < e. σ, t |= P

σ, [b, e] |= D1^D2 iff for some m : b ≤ m ≤ e.
σ, [b,m] |= D1 and σ, [m, e] |= D2

D1^D2

If for some m

D1 D2

m

eb

b e

Example: [P]^[!P]^[[P]]

A valid formula: <P> <=> <P>^<P>^<P>

Pandya Formalizing Timing Diagram Requirements:

Syntax and Semantics (2)

Derived Operators

For some subinterval D: <>D
def
= true^D^true

For all subintervals D: []D
def
= ! <> !D

Validity in execution σ |= D iff σ, [0,#σ − 1] |= D

Example: [](<down(P)>^[!P]^<up(P)> => !<>([!R]^[R])

P

R

Pandya Formalizing Timing Diagram Requirements:

Measurement Formulae

Measurement Terms slen | scount P

eval(slen)(σ, [b, e])
def
= e − b

eval(scount P)(σ, [b, e])
def
=

∑e
i=b

{
1 if σ, i |= P
0 otherwise

}
Measurement Formula mt op c

where op ∈ < | > | = | ≤ | ≥.

Pandya Formalizing Timing Diagram Requirements:

Measuring Counts and Durations

P

b e

eval(slen) = 4

eval(scount P) = 3

Examples

[]([[req]] && slen >= 20 => scount ack >= 3)

Between any two P phases there are at least 300 cycles.
[] (< down(P)>^[!P]^<up(P)> => (slen >= 300))

Minimum Separation

Upper bound

Persistence

Arrow operators [Ravn94]

Quantification exists p: D

σ, [b, e] |= (exists p: D) iff σ′, [b, e] |= D for some p-variant σ′

Pandya Formalizing Timing Diagram Requirements:

Formula Automaton Construction

Theorem (Automata Theoretic Decidability of QDDC)

For each D ∈ QDDC we can effectively construct finite state
automaton AD such that L(D) = L(AD).

For each FSM A we can effectively construct DA ∈ QDDC
such that L(A) = L(DA).

Tool DCVALID – next slide.

Problem

Size of minimum automaton can be non-elementary in size of
formula in the worst case. Thus formula of size n can give minimal
automaton of size O(22

2...

), tower of height n.

Pandya Formalizing Timing Diagram Requirements:

DCVALID: Validity/Model Checker for QDDC formulas

Constructs deterministic finite state automaton A(D) for
QDDC formula D.

The automaton is used as a synchronous observer to model
check QDDC properties of Esterel, SMV, Verilog,
SCADE/Lustre and SAL models.

Uses efficient BDD-based representation of automata using
MONA.

Constructs automaton for formula bottom up keeping each
automaton in minimal deteterminstic form.

[RTTOOLS2001, TACAS2001, SLAP2002, AVOCS2004,
FSTTCS2005, TACAS2006]

Pandya Formalizing Timing Diagram Requirements:

DCVALID Example

(〈P〉_ true) ∧ (slen = 4) ∧ (sdurQ = 2)

Pandya Formalizing Timing Diagram Requirements:

SECE: Semi Extended Chop Expressions

SECE is QDDC without negation and quantification operators.

<P> | [[P]] | slen op c | scount P op c |

D1^D2 | D* | D1 && D2

SECE adequately captures a collection of waveforms (i.e. W)
[!a]^([a])^[[!a]] && [!b]^([b])^[[!b]] &&

[!c]^([c])^[[!c]]

Pandya Formalizing Timing Diagram Requirements:

Nominals: Capturing Waveform Constraints

Nominals are propositions which uniquely mark specific
positions in word.

Used for synchronization between formulae.

Let D be a SECE formula over Σ ∪Θ.

(ex1 u: D) where D ∈ SECE and u ∈ Θ is called SECEN
formulas.

(ex1 u: D) = (exists u: scount(u)=1 && D)
(all1 u: D) = (all u: (scount(u)=1 => D))

Pandya Formalizing Timing Diagram Requirements:

Timing Diagrams to SECEN

SECEN Formula

ex1 ua,ub,uc,va,vb,vc:

-- waveforms

[!a]^<ua>^[a]^<va>^[[!a]] &&

[!b]^<ub>^[b]^<vb>^[[!b]] &&

[!c]^<uc>^[c]^<vc>^[[!c]] &&

-- constraints

true^<ua>^slen>0^<ub>^true &&

true^<ub>^slen>0^<uc>^true &&

true^<vc>^slen>0^<vb>^true &&

true^<vb>^slen>0^<va>^true

Size O(n)
Pandya Formalizing Timing Diagram Requirements:

Equivalent Formula without Nominals

[!a && !b && !c] ^ [a && !b && !c] ^ [a && b && !c] ^

[a && b && c] ^

[!a && !b && !c] ^ [a && !b && !c] ^ [a && b && !c]

Size O(n2).

Pandya Formalizing Timing Diagram Requirements:

Example 2

SECEN Formula

ex1 ua,ub,uc,va,vb,vc:

[!a]^<ua>^[a]^<va>^[[!a]] &&

[!b]^<ub>^[b]^<vb>^[[!b]] && ...

-- constraints

true^<ua>^slen>0^<ub>^true && true^<ua>^slen>0^<uc>^true &&

true^<uc>^slen>0^<ud>^true && true^<uc>^slen>0^<ue>^true &&

true^<vd>^slen>0^<vc>^true && true^<ve>^slen>0^<vc>^true &&

true^<vc>^slen>0^<va>^true && true^<vb>^slen>0^<va>^true

Writing this without nominals is tricky!

Pandya Formalizing Timing Diagram Requirements:

Unordered Stack

SECEN Formula

ex1 ua,ub,uc,va,vb,vc:

[!a]^<ua>^[a]^<va>^[[!a]] && ..

[!c]^<uc>^[c]^<vc>^[[!c]] &&

-- constraints

ext^<u1>^ext^<u2>^ext^<u3>^ext^

<v3>^ext^<v2>^ext^<v1>^ext &&

Bijection(ua,ub,uc,va,vb,vc,u1,u2,u3,v1,v2,v3)

Size O(n2)

Stating this without nominals requires disjunction over all possible
stack orders. Size O(n!)

Pandya Formalizing Timing Diagram Requirements:

SECEN with Nominals

Main Features

Natural and compositional translation of timing diagrams into
SECEN

Exponential succinctness as compared with SECE (and SERE
of PSL)

Elementary automaton construction.

Theorem

For every D ∈ SECEN of size n, we can construct A(D) of size

22
2n

such that L(D) = L(A(D)).

Pandya Formalizing Timing Diagram Requirements:

SECENL: Specifying Limited Liveness

Modalities of occurence of patterns of behaviour
Inspired by LSC of UML 2.0.

Making good things happen – within known bounds.

Syntax of SECENL formula φ

Let Di be SECEN formulas. Let Θ be a set of nominals.

pref(D)
anti(D)
init∀1Θ : (D1/D2)
implies∀1Θ : (D1 D2)
follows∀1Θ : (D1 D2/D3)
triggers∀1Θ : (D1 D2/D3)
φ1 ∧ φ2 | ¬φ

A SECENL formula φ is equivalent to a QDDC formula (using
negations) called ℵ(φ).

Pandya Formalizing Timing Diagram Requirements:

Reduction to QDDC

anti(D) – pattern D must not occur anywhere in behavior.

ℵ(anti(D)) = [](!D)

implies∀1Θ : (D1 D2)

ℵ(implies∀1Θ : (D1 D2)) =
[](all1 Theta: (D1 => D2))

follows∀1Θ : (D1 D2/D3)

ℵ(follows∀1Θ : (D1 D2/3)) =
[](all1 Theta,u: (D1^<u>^D3 => true^<u>^D2^true))

Pandya Formalizing Timing Diagram Requirements:

Example: Lags(P,Q,n)

SECENL formula:

implies∀1u :
(([P] && slen=n)^<u>^[[P]])

true^<u>^[[Q]])

Minepump Example:

lags(HCH4,Alarm,3) && lags(HH2O,Alarm,3) &&

lags((!HCH4 && !HH2O),!ALARM,3)

Pandya Formalizing Timing Diagram Requirements:

Other Properties

Figure : lags(P,Q,n). Figure : track(P,Q,n)

Figure : sepration(P,n) Figure : upperbound(P,n)

Pandya Formalizing Timing Diagram Requirements:

Formula automaton construction

Theorem (Elementary Automaton Construction)

For every D ∈ SECENL of size n, we can construct A(D) of size

22
22

2n

(tower of height 5) such that L(D) = L(A(D)).

In practice not so bad! Compare this with PSL with SERE which
gives tower of height 4.

Pandya Formalizing Timing Diagram Requirements:

DCTOOLS: Architecture

QDDC+UML
QSF2DC

QDDC

DCANALYZE

DCSYNTH

DCMON

consistent

counter example

controller

SysMon

Figure : DCTOOLS.

Pandya Formalizing Timing Diagram Requirements:

Demonstrators

Minepump Controller Specification (proceedings)
Automatic Controller Synthesis

Synchronous Bus Arbiter with diverse latency properties
Automatic Controller Synthesis, Automatic Monitor Synthesis

Alarm annunciation System for a plant

Discordance logic for a plant

Complete AMBA Bus AHB arbiter specification (in progress)

Specification of self navigating and parking robot car
controller
Automatic controller synthesis (in progress)

Pandya Formalizing Timing Diagram Requirements:

Synthesis with Soft Goals

Soft requirement: (!$PUMPON$) >> (!$ALARM$)

Soft Requirement: $PUMPON$ >>(!$ALARM$)

Pandya Formalizing Timing Diagram Requirements:

Synthesis with Soft Goals

Soft Requirement:
((!$YHCH4p$)|(!$PUMPONp$))>>($PUMPONp$)

where YHCH4p : true^(slen=2 && <><HCH4p>)

Pandya Formalizing Timing Diagram Requirements:

DCSynth Performance
Problem Lily Acacia+ DCSynth

time
(Sec)

Memory
/States

time
(Sec)

Memory
/States

time
(Sec)

Memory
/States

Arbhard(4, 4) 161.9 172.6/
108

0.4 29.8/
55

0.09 5.0/
50

Arbhard(5, 5) TOa - 11.4 71.9/
293

4.8 33.4/
432

Arbhard(6, 6) - - TO - 80 1053.0/
4802

Arbhard(7, 7) - - TO - - MOa

Arbtok(8) TO - 46.44 77.9/
73

1.9 12.8/
8

Arbtok(10) TO - NCa - 137 53.0/10
Arbtok(12) TO - NC - TO 255.0/

12
MinePump TO - NC - 0.06 50/ 32

aTO=timeout, MO=memory out and NC=synthesis inconclusive.

Pandya Formalizing Timing Diagram Requirements:

Combining SECENL and LTL

Let φ ∈ SECENL. Then LTL[SECENL] contains LTL formulae
where SECENL formulae are used as propositional letters.

Semantics: Given finite or infinite behaviour ρ and i ∈ dom(ρ)

ρ, i |= φ iff ρ, [0, i] |= φ

Easy to model check!

Tool ctldc modelchecks LTL[SECENL] specification against
LUSTRE or SMV model by using underlying model checker
(see [P. TACAS2001]).

All the standard LTL synthesis algorithms can be extended to
LTL[SECENL].

Pandya Formalizing Timing Diagram Requirements:

Conclusions

A logic for requirements is a pragmetic choice between
expressiveness and decision complexity.

SECENL is a proposal which differs from
state-of-the-art-logics like PSL or Regular LTL.

Semi Extended Chop Expressions with intersection and
counting
Nominals for synchronization
Limited Liveness Properties: Interval logic connectives and
implication without nesting.

LTL[SECENL] is a simpler combination of LTL and SECENL.
Easy to model check or synthesize.

Tool support with DCTOOLS.

Pandya Formalizing Timing Diagram Requirements:

